Analisis Efektivitas Pengenalan Perintah Suara Menggunakan Algoritma Machine Learning untuk Mendukung Pembelajaran Digital di Wilayah Bengkulu

Authors

  • Fherdi Hunata Putra Universitas Muhammadiyah Bengkulu
  • Ahmad Rere Albar Universitas Muhammadiyah Bengkulu
  • Andre Kurniawan Universitas Muhammadiyah Bengkulu
  • Leo Okta Universitas Muhammadiyah Bengkulu
  • Anggi Sunata Nur Akbar Universitas Muhammadiyah Bengkulu
  • Fitriah Universitas Muhammadiyah Bengkulu
  • Muntahanah Universitas Muhammadiyah Bengkulu

Keywords:

ASR, Machine Learning, Transformer, Digital Learning, Technology Inclusion.

Abstract

This study aims to evaluate the effectiveness of a voice command recognition system based on Machine Learning algorithms in supporting digital learning at Panti Asuhan Kasih Sayang, Bengkulu City. Four models were tested: DNN, LSTM, CNN, and Transformer. The Transformer model demonstrated the best performance with an accuracy of 93.4%, precision of 91.8%, recall of 92.1%, and F1-score of 92.0%, followed by LSTM with 90.2% accuracy, and DNN as the baseline with 84.7%. The system was tested in real-time with an average latency of 320ms and handled up to 28 voice commands per minute. The use of this system increased participants’ post-test scores by an average of 18 points and enhanced learning engagement by 85%. Qualitative data from interviews and focus group discussions indicated that the system supported students who struggle with text-based interfaces and was perceived as interactive and easy to use. These findings show that ASR based on Machine Learning is effective in low-resource settings and supports more inclusive learning aligned with the principles of Society 5.0.

Downloads

Download data is not yet available.

References

Ahlawat, H., Aggarwal, N., & Gupta, D. (2025). Automatic Speech Recognition: A survey of deep learning techniques and approaches. International Journal of Cognitive Computing in Engineering, 6(January), 201–237. https://doi.org/10.1016/j.ijcce.2024.12.007

Ahmed, S. K. (2024). How to choose a sampling technique and determine sample size for research: A simplified guide for researchers. Oral Oncology Reports, 12(September), 100662. https://doi.org/10.1016/j.oor.2024.100662

Al-Fraihat, D., Sharrab, Y., Alzyoud, F., Qahmash, A., Tarawneh, M., & Maaita, A. (2024). Speech Recognition Utilizing Deep Learning: A Systematic Review of the Latest Developments. Human-Centric Computing and Information Sciences, 14(March). https://doi.org/10.22967/HCIS.2024.14.015

B, T. Z. (2023). Proceedings of the 2022 7th International Conference on Modern Management and Education Technology (MMET 2022). In Proceedings of the 2022 7th International Conference on Modern Management and Education Technology (MMET 2022). Atlantis Press SARL. https://doi.org/10.2991/978-2-494069-51-0

Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206

Helander, M., Moody, T. S., & Joost, M. G. (1988). Chapter 14 - Systems Design for Automated Speech Recognition (M. B. T.-H. of H.-C. I. HELANDER (ed.); pp. 301–319). North-Holland. https://doi.org/https://doi.org/10.1016/B978-0-444-70536-5.50019-1

Kheddar, H., Hemis, M., & Himeur, Y. (2024). Automatic speech recognition using advanced deep learning approaches: A survey. Information Fusion, 109, 102422. https://doi.org/https://doi.org/10.1016/j.inffus.2024.102422

Liang, J., Li, G., Zhang, F., Fan, D., & Luo, H. (2023). Benefits and challenges of the educational metaverse: Evidence from quantitative and qualitative data. Journal of Educational Technology Development and Exchange, 16(1), 71–91. https://doi.org/10.18785/jetde.1601.04

Natarajan, S., Rahman Al-Haddad, S. A., Ahmad, F. A., Kamil, R., Hassan, M. K., Azrad, S., Macleans, J. F., Abdulhussain, S. H., Mahmmod, B. M., Saparkhojayev, N., &Dauitbayeva, A. (2025). Deep neural networks for speech enhancement and speech recognition: A systematic review. Ain Shams Engineering Journal, 16(7), 103405. https://doi.org/10.1016/j.asej.2025.103405

O’Shaughnessy, D. (2024). Trends and developments in automatic speech recognition research. Computer Speech & Language, 83, 101538. https://doi.org/https://doi.org/10.1016/j.csl.2023.101538

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., Hoagwood, K., Angeles, L., & Northwest, K. P. (1968). "Dentists face added drug regulation. Dental Survey, 44(12), 73. https://doi.org/10.1007/s10488-013-0528-y.Purposeful

Sarbast, H. (2024). Voice Recognition Based on Machine Learning Classification Algorithms: A Review. Indonesian Journal of Computer Science, 13(3), 4414–4431. https://doi.org/10.33022/ijcs.v13i3.4110

Silva, B., Hak, F., Guimaraes, T., Manuel, M., & Santos, M. F. (2023). Rule-based System for Effective Clinical Decision Support. Procedia Computer Science, 220(2019), 880–885. https://doi.org/10.1016/j.procs.2023.03.119

Sun, W. (2023). The impact of automatic speech recognition technology on second language pronunciation and speaking skills of EFL learners: a mixed methods investigation. Frontiers in Psychology, 14(August). https://doi.org/10.3389/fpsyg.2023.1210187

Taherdoost, H., Business, H., Sdn, S., Group, C., & Lumpur, K. (2016). Sampling Methods in Research Methodology : How to Choose a Sampling Technique for. International Journal of Academic Research in Management (IJARM), 5(2), 18–27.

Downloads

Published

2025-08-12

How to Cite

Putra, F. H., Albar, A. R., Kurniawan, A., Okta, L., Akbar, A. S. N., Fitriah, F., & Muntahanah, M. (2025). Analisis Efektivitas Pengenalan Perintah Suara Menggunakan Algoritma Machine Learning untuk Mendukung Pembelajaran Digital di Wilayah Bengkulu. Mestaka: Jurnal Pengabdian Kepada Masyarakat, 4(4), 452–459. Retrieved from http://pakisjournal.com/index.php/mestaka/article/view/740